Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 109(3): 605-618, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32686076

RESUMO

Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno-oncology (IO) the aim is to direct the patient's own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/PD-L1 and CTLA4 receptors in targeted patient populations, the focus of further development has shifted toward combination therapies. However, the current drug-development approach of exploiting a vast number of possible combination targets and dosing regimens has proven to be challenging and is arguably inefficient. In particular, the unprecedented number of clinical trials testing different combinations may no longer be sustainable by the population of available patients. Further development in IO requires a step change in selection and validation of candidate therapies to decrease development attrition rate and limit the number of clinical trials. Quantitative systems pharmacology (QSP) proposes to tackle this challenge through mechanistic modeling and simulation. Compounds' pharmacokinetics, target binding, and mechanisms of action as well as existing knowledge on the underlying tumor and immune system biology are described by quantitative, dynamic models aiming to predict clinical results for novel combinations. Here, we review the current QSP approaches, the legacy of mathematical models available to quantitative clinical pharmacologists describing interaction between tumor and immune system, and the recent development of IO QSP platform models. We argue that QSP and virtual patients can be integrated as a new tool in existing IO drug development approaches to increase the efficiency and effectiveness of the search for novel combination therapies.


Assuntos
Alergia e Imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desenvolvimento de Medicamentos , Inibidores de Checkpoint Imunológico/uso terapêutico , Oncologia , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Biologia de Sistemas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Simulação por Computador , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/farmacocinética , Modelos Imunológicos , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/metabolismo , Microambiente Tumoral
2.
Artigo em Inglês | MEDLINE | ID: mdl-32974289

RESUMO

Solving environmental and social challenges such as climate change requires a shift from our current non-renewable manufacturing model to a sustainable bioeconomy. To lower carbon emissions in the production of fuels and chemicals, plant biomass feedstocks can replace petroleum using microorganisms as biocatalysts. The anaerobic thermophile Clostridium thermocellum is a promising bacterium for bioconversion due to its capability to efficiently degrade lignocellulosic biomass. However, the complex metabolism of C. thermocellum is not fully understood, hindering metabolic engineering to achieve high titers, rates, and yields of targeted molecules. In this study, we developed an updated genome-scale metabolic model of C. thermocellum that accounts for recent metabolic findings, has improved prediction accuracy, and is standard-conformant to ensure easy reproducibility. We illustrated two applications of the developed model. We first formulated a multi-omics integration protocol and used it to understand redox metabolism and potential bottlenecks in biofuel (e.g., ethanol) production in C. thermocellum. Second, we used the metabolic model to design modular cells for efficient production of alcohols and esters with broad applications as flavors, fragrances, solvents, and fuels. The proposed designs not only feature intuitive push-and-pull metabolic engineering strategies, but also present novel manipulations around important central metabolic branch-points. We anticipate the developed genome-scale metabolic model will provide a useful tool for system analysis of C. thermocellum metabolism to fundamentally understand its physiology and guide metabolic engineering strategies to rapidly generate modular production strains for effective biosynthesis of biofuels and biochemicals from lignocellulosic biomass.

3.
Biotechnol Bioeng ; 114(11): 2592-2604, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28671264

RESUMO

As a model thermophilic bacterium for the production of second-generation biofuels, the metabolism of Clostridium thermocellum has been widely studied. However, most studies have characterized C. thermocellum metabolism for growth at relatively low substrate concentrations. This outlook is not industrially relevant, however, as commercial viability requires substrate loadings of at least 100 g/L cellulosic materials. Recently, a wild-type C. thermocellum DSM1313 was cultured on high cellulose loading batch fermentations and reported to produce a wide range of fermentative products not seen at lower substrate concentrations, opening the door for a more in-depth analysis of how this organism will behave in industrially relevant conditions. In this work, we elucidated the interconnectedness of overflow metabolism and growth cessation in C. thermocellum during high cellulose loading batch fermentations (100 g/L). Metabolic flux and thermodynamic analyses suggested that hydrogen and formate accumulation perturbed the complex redox metabolism and limited conversion of pyruvate to acetyl-CoA conversion, likely leading to overflow metabolism and growth cessation in C. thermocellum. Pyruvate formate lyase (PFL) acts as an important redox valve and its flux is inhibited by formate accumulation. Finally, we demonstrated that manipulation of fermentation conditions to alleviate hydrogen accumulation could dramatically alter the fate of pyruvate, providing valuable insight into process design for enhanced C. thermocellum production of chemicals and biofuels. Biotechnol. Bioeng. 2017;114: 2592-2604. © 2017 Wiley Periodicals, Inc.


Assuntos
Proliferação de Células/fisiologia , Celulose/metabolismo , Clostridium thermocellum/fisiologia , Metabolismo Energético/fisiologia , Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Clostridium thermocellum/classificação , Simulação por Computador , Fermentação , Hidrogênio/metabolismo , Especificidade da Espécie
4.
Adv Biochem Eng Biotechnol ; 160: 103-119, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27913830

RESUMO

Thermophilic microorganisms are of increasing interest for many industries as their enzymes and metabolisms are highly efficient at elevated temperatures. However, their metabolic processes are often largely different from their mesophilic counterparts. These differences can lead to metabolic engineering strategies that are doomed to fail. Genome-scale metabolic modeling is an effective and highly utilized way to investigate cellular phenotypes and to test metabolic engineering strategies. In this review we chronicle a number of thermophilic organisms that have recently been studied with genome-scale models. The microorganisms spread across archaea and bacteria domains, and their study gives insights that can be applied in a broader context than just the species they describe. We end with a perspective on the future development and applications of genome-scale models of thermophilic organisms.


Assuntos
Genoma Bacteriano/genética , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Metaboloma/genética , Modelos Biológicos , Thermus thermophilus/genética , Software
5.
Biotechnol Biofuels ; 9(1): 194, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27602057

RESUMO

BACKGROUND: Clostridium thermocellum is a gram-positive thermophile that can directly convert lignocellulosic material into biofuels. The metabolism of C. thermocellum contains many branches and redundancies which limit biofuel production, and typical genetic techniques are time-consuming. Further, the genome sequence of a genetically tractable strain C. thermocellum DSM 1313 has been recently sequenced and annotated. Therefore, developing a comprehensive, predictive, genome-scale metabolic model of DSM 1313 is desired for elucidating its complex phenotypes and facilitating model-guided metabolic engineering. RESULTS: We constructed a genome-scale metabolic model iAT601 for DSM 1313 using the KEGG database as a scaffold and an extensive literature review and bioinformatic analysis for model refinement. Next, we used several sets of experimental data to train the model, e.g., estimation of the ATP requirement for growth-associated maintenance (13.5 mmol ATP/g DCW/h) and cellulosome synthesis (57 mmol ATP/g cellulosome/h). Using our tuned model, we investigated the effect of cellodextrin lengths on cell yields, and could predict in silico experimentally observed differences in cell yield based on which cellodextrin species is assimilated. We further employed our tuned model to analyze the experimentally observed differences in fermentation profiles (i.e., the ethanol to acetate ratio) between cellobiose- and cellulose-grown cultures and infer regulatory mechanisms to explain the phenotypic differences. Finally, we used the model to design over 250 genetic modification strategies with the potential to optimize ethanol production, 6155 for hydrogen production, and 28 for isobutanol production. CONCLUSIONS: Our developed genome-scale model iAT601 is capable of accurately predicting complex cellular phenotypes under a variety of conditions and serves as a high-quality platform for model-guided strain design and metabolic engineering to produce industrial biofuels and chemicals of interest.

6.
Metab Eng ; 32: 207-219, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26497628

RESUMO

Clostridium thermocellum is an anaerobic, Gram-positive, thermophilic bacterium that has generated great interest due to its ability to ferment lignocellulosic biomass to ethanol. However, ethanol production is low due to the complex and poorly understood branched metabolism of C. thermocellum, and in some cases overflow metabolism as well. In this work, we developed a predictive stoichiometric metabolic model for C. thermocellum which incorporates the current state of understanding, with particular attention to cofactor specificity in the atypical glycolytic enzymes and the complex energy, redox, and fermentative pathways with the goal of aiding metabolic engineering efforts. We validated the model's capability to encompass experimentally observed phenotypes for the parent strain and derived mutants designed for significant perturbation of redox and energy pathways. Metabolic flux distributions revealed significant alterations in key metabolic branch points (e.g., phosphoenol pyruvate, pyruvate, acetyl-CoA, and cofactor nodes) in engineered strains for channeling electron and carbon fluxes for enhanced ethanol synthesis, with the best performing strain doubling ethanol yield and titer compared to the parent strain. In silico predictions of a redox-imbalanced genotype incapable of growth were confirmed in vivo, and a mutant strain was used as a platform to probe redox bottlenecks in the central metabolism that hinder efficient ethanol production. The results highlight the robustness of the redox metabolism of C. thermocellum and the necessity of streamlined electron flux from reduced ferredoxin to NAD(P)H for high ethanol production. The model was further used to design a metabolic engineering strategy to phenotypically constrain C. thermocellum to achieve high ethanol yields while requiring minimal genetic manipulations. The model can be applied to design C. thermocellum as a platform microbe for consolidated bioprocessing to produce ethanol and other reduced metabolites.


Assuntos
Clostridium thermocellum/metabolismo , Etanol/metabolismo , Algoritmos , Biomassa , Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Elétrons , Fermentação , Ferredoxinas/metabolismo , Glicólise/genética , Hidrogênio/metabolismo , Engenharia Metabólica , Mutação/genética , NADP/metabolismo , Oxirredução
7.
J Biomol Struct Dyn ; 33(2): 289-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24558982

RESUMO

Selenomethionine incorporation has proven useful in X-ray crystallography of proteins to obtain phase information. In nucleic acids, the introduction of selenium to different positions is beneficial for solving the phase problem as well, but its addition to the 2' position also significantly enhances the crystal formation. The selenium modification in a single nucleotide shows a preference towards 2'-endo sugar puckering, which is in conflict with existing crystal structures where the duplex incorporated 2'-selenium-modified nucleotide is exclusively found in a 3'-endo conformation. Our work provides a rationale why 2'-selenium modifications facilitate crystallization despite this contradictory behavior.


Assuntos
DNA/química , Nucleosídeos/química , Compostos Organosselênicos/química , Sequência de Bases , Cristalização , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Temperatura de Transição
8.
Biotechnol Bioeng ; 111(11): 2200-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24895195

RESUMO

Biodiesels in the form of fatty acyl ethyl esters (FAEEs) are a promising next generation biofuel due to their chemical properties and compatibility with existing infrastructure. It has recently been shown that expression of a bacterial acyl-transferase in the established industrial workhorse Saccharomyces cerevisiae can lead to production of FAEEs by condensation of fatty acyl-CoAs and ethanol. In contrast to recent strategies to produce FAEEs in S. cerevisiae through manipulation of de novo fatty acid biosynthesis or a series of arduous genetic manipulations, we introduced a novel genetic background, which is comparable in titer to previous reports with a fraction of the genetic disruption by aiming at increasing the fatty acyl-CoA pools. In addition, we combined metabolic engineering with modification of culture conditions to produce a maximum titer of over 25 mg/L FAEEs, a 40% improvement over previous reports and a 17-fold improvement over our initial characterizations. Biotechnol. Bioeng. 2014;111: 2200-2208. © 2014 Wiley Periodicals, Inc.


Assuntos
Meios de Cultura/química , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Biocombustíveis , Saccharomyces cerevisiae/genética
9.
Biotechnol J ; 8(5): 605-18, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23613435

RESUMO

Identifying multiple enzyme targets for metabolic engineering is very critical for redirecting cellular metabolism to achieve desirable phenotypes, e.g., overproduction of a target chemical. The challenge is to determine which enzymes and how much of these enzymes should be manipulated by adding, deleting, under-, and/or over-expressing associated genes. In this study, we report the development of a systematic multiple enzyme targeting method (SMET), to rationally design optimal strains for target chemical overproduction. The SMET method combines both elementary mode analysis and ensemble metabolic modeling to derive SMET metrics including l-values and c-values that can identify rate-limiting reaction steps and suggest which enzymes and how much of these enzymes to manipulate to enhance product yields, titers, and productivities. We illustrated, tested, and validated the SMET method by analyzing two networks, a simple network for concept demonstration and an Escherichia coli metabolic network for aromatic amino acid overproduction. The SMET method could systematically predict simultaneous multiple enzyme targets and their optimized expression levels, consistent with experimental data from the literature, without performing an iterative sequence of single-enzyme perturbation. The SMET method was much more efficient and effective than single-enzyme perturbation in terms of computation time and finding improved solutions.


Assuntos
Biologia Computacional/métodos , Redes e Vias Metabólicas , Modelos Biológicos , Aminoácidos Aromáticos/metabolismo , Enzimas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Açúcares Ácidos/metabolismo
10.
Subcell Biochem ; 64: 21-42, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23080244

RESUMO

Elementary mode analysis is a useful metabolic pathway analysis tool to characterize cellular metabolism. It can identify all feasible metabolic pathways known as elementary modes that are inherent to a metabolic network. Each elementary mode contains a minimal and unique set of enzymatic reactions that can support cellular functions at steady state. Knowledge of all these pathway options enables systematic characterization of cellular phenotypes, analysis of metabolic network properties (e.g. structure, regulation, robustness, and fragility), phenotypic behavior discovery, and rational strain design for metabolic engineering application. This chapter focuses on the application of elementary mode analysis to reprogram microbial metabolic pathways for rational strain design and the metabolic pathway evolution of designed strains.


Assuntos
Bactérias/metabolismo , Biologia Computacional/métodos , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Software , Algoritmos , Bactérias/genética , Clonagem Molecular/métodos , Fungos/genética , Fungos/metabolismo , Marcação de Genes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...